Metamath Proof Explorer


Theorem f0bi

Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018)

Ref Expression
Assertion f0bi F : X F =

Proof

Step Hyp Ref Expression
1 ffn F : X F Fn
2 fn0 F Fn F =
3 1 2 sylib F : X F =
4 f0 : X
5 feq1 F = F : X : X
6 4 5 mpbiri F = F : X
7 3 6 impbii F : X F =