Metamath Proof Explorer


Theorem f0cli

Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013)

Ref Expression
Hypotheses f0cl.1 F : A B
f0cl.2 B
Assertion f0cli F C B

Proof

Step Hyp Ref Expression
1 f0cl.1 F : A B
2 f0cl.2 B
3 1 ffvelrni C A F C B
4 1 fdmi dom F = A
5 4 eleq2i C dom F C A
6 ndmfv ¬ C dom F F C =
7 6 2 eqeltrdi ¬ C dom F F C B
8 5 7 sylnbir ¬ C A F C B
9 3 8 pm2.61i F C B