Metamath Proof Explorer


Theorem f0dom0

Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019)

Ref Expression
Assertion f0dom0 F : X Y X = F =

Proof

Step Hyp Ref Expression
1 feq2 X = F : X Y F : Y
2 f0bi F : Y F =
3 2 biimpi F : Y F =
4 1 3 syl6bi X = F : X Y F =
5 4 com12 F : X Y X = F =
6 feq1 F = F : X Y : X Y
7 fdm : X Y dom = X
8 dm0 dom =
9 7 8 eqtr3di : X Y X =
10 6 9 syl6bi F = F : X Y X =
11 10 com12 F : X Y F = X =
12 5 11 impbid F : X Y X = F =