Metamath Proof Explorer


Theorem f0rn0

Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018)

Ref Expression
Assertion f0rn0 E : X Y ¬ y Y y ran E X =

Proof

Step Hyp Ref Expression
1 fdm E : X Y dom E = X
2 frn E : X Y ran E Y
3 ralnex y Y ¬ y ran E ¬ y Y y ran E
4 disj Y ran E = y Y ¬ y ran E
5 df-ss ran E Y ran E Y = ran E
6 incom ran E Y = Y ran E
7 6 eqeq1i ran E Y = ran E Y ran E = ran E
8 eqtr2 Y ran E = ran E Y ran E = ran E =
9 8 ex Y ran E = ran E Y ran E = ran E =
10 7 9 sylbi ran E Y = ran E Y ran E = ran E =
11 5 10 sylbi ran E Y Y ran E = ran E =
12 4 11 syl5bir ran E Y y Y ¬ y ran E ran E =
13 3 12 syl5bir ran E Y ¬ y Y y ran E ran E =
14 2 13 syl E : X Y ¬ y Y y ran E ran E =
15 14 imp E : X Y ¬ y Y y ran E ran E =
16 15 adantl dom E = X E : X Y ¬ y Y y ran E ran E =
17 dm0rn0 dom E = ran E =
18 16 17 sylibr dom E = X E : X Y ¬ y Y y ran E dom E =
19 eqeq1 X = dom E X = dom E =
20 19 eqcoms dom E = X X = dom E =
21 20 adantr dom E = X E : X Y ¬ y Y y ran E X = dom E =
22 18 21 mpbird dom E = X E : X Y ¬ y Y y ran E X =
23 22 exp32 dom E = X E : X Y ¬ y Y y ran E X =
24 1 23 mpcom E : X Y ¬ y Y y ran E X =
25 24 imp E : X Y ¬ y Y y ran E X =