Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f10
Next ⟩
f10d
Metamath Proof Explorer
Ascii
Unicode
Theorem
f10
Description:
The empty set maps one-to-one into any class.
(Contributed by
NM
, 7-Apr-1998)
Ref
Expression
Assertion
f10
⊢
∅
:
∅
⟶
1-1
A
Proof
Step
Hyp
Ref
Expression
1
f0
⊢
∅
:
∅
⟶
A
2
funcnv0
⊢
Fun
⁡
∅
-1
3
df-f1
⊢
∅
:
∅
⟶
1-1
A
↔
∅
:
∅
⟶
A
∧
Fun
⁡
∅
-1
4
1
2
3
mpbir2an
⊢
∅
:
∅
⟶
1-1
A