Metamath Proof Explorer


Theorem f102g

Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion f102g A = F : A B F : A 1-1 B

Proof

Step Hyp Ref Expression
1 feq2 A = F : A B F : B
2 1 biimpa A = F : A B F : B
3 f0bi F : B F =
4 f10 : 1-1 B
5 f1eq1 F = F : 1-1 B : 1-1 B
6 4 5 mpbiri F = F : 1-1 B
7 3 6 sylbi F : B F : 1-1 B
8 2 7 syl A = F : A B F : 1-1 B
9 f1eq2 A = F : A 1-1 B F : 1-1 B
10 9 adantr A = F : A B F : A 1-1 B F : 1-1 B
11 8 10 mpbird A = F : A B F : A 1-1 B