Metamath Proof Explorer


Theorem f10d

Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020)

Ref Expression
Hypothesis f10d.f φ F =
Assertion f10d φ F : dom F 1-1 A

Proof

Step Hyp Ref Expression
1 f10d.f φ F =
2 f10 : 1-1 A
3 dm0 dom =
4 f1eq2 dom = : dom 1-1 A : 1-1 A
5 3 4 ax-mp : dom 1-1 A : 1-1 A
6 2 5 mpbir : dom 1-1 A
7 1 dmeqd φ dom F = dom
8 eqidd φ A = A
9 1 7 8 f1eq123d φ F : dom F 1-1 A : dom 1-1 A
10 6 9 mpbiri φ F : dom F 1-1 A