Metamath Proof Explorer


Theorem f13idfv

Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Hypothesis f13idfv.a A = 0 2
Assertion f13idfv F : A 1-1 B F : A B F 0 F 1 F 0 F 2 F 1 F 2

Proof

Step Hyp Ref Expression
1 f13idfv.a A = 0 2
2 0z 0
3 1z 1
4 2z 2
5 2 3 4 3pm3.2i 0 1 2
6 0ne1 0 1
7 0ne2 0 2
8 1ne2 1 2
9 6 7 8 3pm3.2i 0 1 0 2 1 2
10 fz0tp 0 2 = 0 1 2
11 1 10 eqtri A = 0 1 2
12 11 f13dfv 0 1 2 0 1 0 2 1 2 F : A 1-1 B F : A B F 0 F 1 F 0 F 2 F 1 F 2
13 5 9 12 mp2an F : A 1-1 B F : A B F 0 F 1 F 0 F 2 F 1 F 2