Metamath Proof Explorer


Theorem f1cnv

Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011)

Ref Expression
Assertion f1cnv F:A1-1BF-1:ranF1-1 ontoA

Proof

Step Hyp Ref Expression
1 f1f1orn F:A1-1BF:A1-1 ontoranF
2 f1ocnv F:A1-1 ontoranFF-1:ranF1-1 ontoA
3 1 2 syl F:A1-1BF-1:ranF1-1 ontoA