Metamath Proof Explorer


Theorem f1co

Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of TakeutiZaring p. 25. (Contributed by NM, 28-May-1998) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion f1co F : B 1-1 C G : A 1-1 B F G : A 1-1 C

Proof

Step Hyp Ref Expression
1 f1cof1 F : B 1-1 C G : A 1-1 B F G : G -1 B 1-1 C
2 f1f G : A 1-1 B G : A B
3 fimacnv G : A B G -1 B = A
4 2 3 syl G : A 1-1 B G -1 B = A
5 4 adantl F : B 1-1 C G : A 1-1 B G -1 B = A
6 5 eqcomd F : B 1-1 C G : A 1-1 B A = G -1 B
7 f1eq2 A = G -1 B F G : A 1-1 C F G : G -1 B 1-1 C
8 6 7 syl F : B 1-1 C G : A 1-1 B F G : A 1-1 C F G : G -1 B 1-1 C
9 1 8 mpbird F : B 1-1 C G : A 1-1 B F G : A 1-1 C