Metamath Proof Explorer


Theorem f1cocnv1

Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011)

Ref Expression
Assertion f1cocnv1 F : A 1-1 B F -1 F = I A

Proof

Step Hyp Ref Expression
1 f1f1orn F : A 1-1 B F : A 1-1 onto ran F
2 f1ococnv1 F : A 1-1 onto ran F F -1 F = I A
3 1 2 syl F : A 1-1 B F -1 F = I A