Metamath Proof Explorer


Theorem f1cofveqaeqALT

Description: Alternate proof of f1cofveqaeq , 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion f1cofveqaeqALT F : B 1-1 C G : A 1-1 B X A Y A F G X = F G Y X = Y

Proof

Step Hyp Ref Expression
1 f1f G : A 1-1 B G : A B
2 fvco3 G : A B X A F G X = F G X
3 2 adantrr G : A B X A Y A F G X = F G X
4 fvco3 G : A B Y A F G Y = F G Y
5 4 adantrl G : A B X A Y A F G Y = F G Y
6 3 5 eqeq12d G : A B X A Y A F G X = F G Y F G X = F G Y
7 6 ex G : A B X A Y A F G X = F G Y F G X = F G Y
8 1 7 syl G : A 1-1 B X A Y A F G X = F G Y F G X = F G Y
9 8 adantl F : B 1-1 C G : A 1-1 B X A Y A F G X = F G Y F G X = F G Y
10 9 imp F : B 1-1 C G : A 1-1 B X A Y A F G X = F G Y F G X = F G Y
11 f1co F : B 1-1 C G : A 1-1 B F G : A 1-1 C
12 f1veqaeq F G : A 1-1 C X A Y A F G X = F G Y X = Y
13 11 12 sylan F : B 1-1 C G : A 1-1 B X A Y A F G X = F G Y X = Y
14 10 13 sylbird F : B 1-1 C G : A 1-1 B X A Y A F G X = F G Y X = Y