Metamath Proof Explorer


Theorem f1dmex

Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep . (Contributed by NM, 4-Sep-2004)

Ref Expression
Assertion f1dmex F : A 1-1 B B C A V

Proof

Step Hyp Ref Expression
1 f1f F : A 1-1 B F : A B
2 1 frnd F : A 1-1 B ran F B
3 ssexg ran F B B C ran F V
4 2 3 sylan F : A 1-1 B B C ran F V
5 4 ex F : A 1-1 B B C ran F V
6 f1cnv F : A 1-1 B F -1 : ran F 1-1 onto A
7 f1ofo F -1 : ran F 1-1 onto A F -1 : ran F onto A
8 6 7 syl F : A 1-1 B F -1 : ran F onto A
9 fornex ran F V F -1 : ran F onto A A V
10 5 8 9 syl6ci F : A 1-1 B B C A V
11 10 imp F : A 1-1 B B C A V