Metamath Proof Explorer


Theorem f1dom2g

Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015) (Proof shortened by BTernaryTau, 25-Sep-2024)

Ref Expression
Assertion f1dom2g A V B W F : A 1-1 B A B

Proof

Step Hyp Ref Expression
1 f1f F : A 1-1 B F : A B
2 fex2 F : A B A V B W F V
3 1 2 syl3an1 F : A 1-1 B A V B W F V
4 3 3coml A V B W F : A 1-1 B F V
5 f1dom3g F V B W F : A 1-1 B A B
6 4 5 syld3an1 A V B W F : A 1-1 B A B