Metamath Proof Explorer


Theorem f1dom3el3dif

Description: The range of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019)

Ref Expression
Hypotheses f1dom3fv3dif.v φ A X B Y C Z
f1dom3fv3dif.n φ A B A C B C
f1dom3fv3dif.f φ F : A B C 1-1 R
Assertion f1dom3el3dif φ x R y R z R x y x z y z

Proof

Step Hyp Ref Expression
1 f1dom3fv3dif.v φ A X B Y C Z
2 f1dom3fv3dif.n φ A B A C B C
3 f1dom3fv3dif.f φ F : A B C 1-1 R
4 f1f F : A B C 1-1 R F : A B C R
5 simpr φ F : A B C R F : A B C R
6 eqidd φ A = A
7 6 3mix1d φ A = A A = B A = C
8 1 simp1d φ A X
9 eltpg A X A A B C A = A A = B A = C
10 8 9 syl φ A A B C A = A A = B A = C
11 7 10 mpbird φ A A B C
12 11 adantr φ F : A B C R A A B C
13 5 12 ffvelrnd φ F : A B C R F A R
14 eqidd φ B = B
15 14 3mix2d φ B = A B = B B = C
16 1 simp2d φ B Y
17 eltpg B Y B A B C B = A B = B B = C
18 16 17 syl φ B A B C B = A B = B B = C
19 15 18 mpbird φ B A B C
20 19 adantr φ F : A B C R B A B C
21 5 20 ffvelrnd φ F : A B C R F B R
22 1 simp3d φ C Z
23 tpid3g C Z C A B C
24 22 23 syl φ C A B C
25 24 adantr φ F : A B C R C A B C
26 5 25 ffvelrnd φ F : A B C R F C R
27 13 21 26 3jca φ F : A B C R F A R F B R F C R
28 27 expcom F : A B C R φ F A R F B R F C R
29 4 28 syl F : A B C 1-1 R φ F A R F B R F C R
30 3 29 mpcom φ F A R F B R F C R
31 1 2 3 f1dom3fv3dif φ F A F B F A F C F B F C
32 neeq1 x = F A x y F A y
33 neeq1 x = F A x z F A z
34 32 33 3anbi12d x = F A x y x z y z F A y F A z y z
35 neeq2 y = F B F A y F A F B
36 neeq1 y = F B y z F B z
37 35 36 3anbi13d y = F B F A y F A z y z F A F B F A z F B z
38 neeq2 z = F C F A z F A F C
39 neeq2 z = F C F B z F B F C
40 38 39 3anbi23d z = F C F A F B F A z F B z F A F B F A F C F B F C
41 34 37 40 rspc3ev F A R F B R F C R F A F B F A F C F B F C x R y R z R x y x z y z
42 30 31 41 syl2anc φ x R y R z R x y x z y z