Metamath Proof Explorer


Theorem f1dom3fv3dif

Description: The function values for a 1-1 function from a set with three different elements are different. (Contributed by AV, 20-Mar-2019)

Ref Expression
Hypotheses f1dom3fv3dif.v φ A X B Y C Z
f1dom3fv3dif.n φ A B A C B C
f1dom3fv3dif.f φ F : A B C 1-1 R
Assertion f1dom3fv3dif φ F A F B F A F C F B F C

Proof

Step Hyp Ref Expression
1 f1dom3fv3dif.v φ A X B Y C Z
2 f1dom3fv3dif.n φ A B A C B C
3 f1dom3fv3dif.f φ F : A B C 1-1 R
4 2 simp1d φ A B
5 eqidd φ A = A
6 5 3mix1d φ A = A A = B A = C
7 1 simp1d φ A X
8 eltpg A X A A B C A = A A = B A = C
9 7 8 syl φ A A B C A = A A = B A = C
10 6 9 mpbird φ A A B C
11 eqidd φ B = B
12 11 3mix2d φ B = A B = B B = C
13 1 simp2d φ B Y
14 eltpg B Y B A B C B = A B = B B = C
15 13 14 syl φ B A B C B = A B = B B = C
16 12 15 mpbird φ B A B C
17 f1fveq F : A B C 1-1 R A A B C B A B C F A = F B A = B
18 3 10 16 17 syl12anc φ F A = F B A = B
19 18 necon3bid φ F A F B A B
20 4 19 mpbird φ F A F B
21 2 simp2d φ A C
22 1 simp3d φ C Z
23 tpid3g C Z C A B C
24 22 23 syl φ C A B C
25 f1fveq F : A B C 1-1 R A A B C C A B C F A = F C A = C
26 3 10 24 25 syl12anc φ F A = F C A = C
27 26 necon3bid φ F A F C A C
28 21 27 mpbird φ F A F C
29 2 simp3d φ B C
30 f1fveq F : A B C 1-1 R B A B C C A B C F B = F C B = C
31 3 16 24 30 syl12anc φ F B = F C B = C
32 31 necon3bid φ F B F C B C
33 29 32 mpbird φ F B F C
34 20 28 33 3jca φ F A F B F A F C F B F C