Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1eq1
Next ⟩
f1eq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1eq1
Description:
Equality theorem for one-to-one functions.
(Contributed by
NM
, 10-Feb-1997)
Ref
Expression
Assertion
f1eq1
⊢
F
=
G
→
F
:
A
⟶
1-1
B
↔
G
:
A
⟶
1-1
B
Proof
Step
Hyp
Ref
Expression
1
feq1
⊢
F
=
G
→
F
:
A
⟶
B
↔
G
:
A
⟶
B
2
cnveq
⊢
F
=
G
→
F
-1
=
G
-1
3
2
funeqd
⊢
F
=
G
→
Fun
⁡
F
-1
↔
Fun
⁡
G
-1
4
1
3
anbi12d
⊢
F
=
G
→
F
:
A
⟶
B
∧
Fun
⁡
F
-1
↔
G
:
A
⟶
B
∧
Fun
⁡
G
-1
5
df-f1
⊢
F
:
A
⟶
1-1
B
↔
F
:
A
⟶
B
∧
Fun
⁡
F
-1
6
df-f1
⊢
G
:
A
⟶
1-1
B
↔
G
:
A
⟶
B
∧
Fun
⁡
G
-1
7
4
5
6
3bitr4g
⊢
F
=
G
→
F
:
A
⟶
1-1
B
↔
G
:
A
⟶
1-1
B