Metamath Proof Explorer


Theorem f1eq1

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq1 F = G F : A 1-1 B G : A 1-1 B

Proof

Step Hyp Ref Expression
1 feq1 F = G F : A B G : A B
2 cnveq F = G F -1 = G -1
3 2 funeqd F = G Fun F -1 Fun G -1
4 1 3 anbi12d F = G F : A B Fun F -1 G : A B Fun G -1
5 df-f1 F : A 1-1 B F : A B Fun F -1
6 df-f1 G : A 1-1 B G : A B Fun G -1
7 4 5 6 3bitr4g F = G F : A 1-1 B G : A 1-1 B