Metamath Proof Explorer


Theorem f1eq2

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq2 A = B F : A 1-1 C F : B 1-1 C

Proof

Step Hyp Ref Expression
1 feq2 A = B F : A C F : B C
2 1 anbi1d A = B F : A C Fun F -1 F : B C Fun F -1
3 df-f1 F : A 1-1 C F : A C Fun F -1
4 df-f1 F : B 1-1 C F : B C Fun F -1
5 2 3 4 3bitr4g A = B F : A 1-1 C F : B 1-1 C