Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1eq2
Next ⟩
f1eq3
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1eq2
Description:
Equality theorem for one-to-one functions.
(Contributed by
NM
, 10-Feb-1997)
Ref
Expression
Assertion
f1eq2
⊢
A
=
B
→
F
:
A
⟶
1-1
C
↔
F
:
B
⟶
1-1
C
Proof
Step
Hyp
Ref
Expression
1
feq2
⊢
A
=
B
→
F
:
A
⟶
C
↔
F
:
B
⟶
C
2
1
anbi1d
⊢
A
=
B
→
F
:
A
⟶
C
∧
Fun
⁡
F
-1
↔
F
:
B
⟶
C
∧
Fun
⁡
F
-1
3
df-f1
⊢
F
:
A
⟶
1-1
C
↔
F
:
A
⟶
C
∧
Fun
⁡
F
-1
4
df-f1
⊢
F
:
B
⟶
1-1
C
↔
F
:
B
⟶
C
∧
Fun
⁡
F
-1
5
2
3
4
3bitr4g
⊢
A
=
B
→
F
:
A
⟶
1-1
C
↔
F
:
B
⟶
1-1
C