Step |
Hyp |
Ref |
Expression |
1 |
|
f1cocnv1 |
|
2 |
|
coeq2 |
|
3 |
2
|
eqeq1d |
|
4 |
1 3
|
syl5ibcom |
|
5 |
4
|
adantr |
|
6 |
|
f1fn |
|
7 |
6
|
adantl |
|
8 |
7
|
adantr |
|
9 |
|
f1fn |
|
10 |
9
|
adantr |
|
11 |
10
|
adantr |
|
12 |
|
equid |
|
13 |
|
resieq |
|
14 |
12 13
|
mpbiri |
|
15 |
14
|
anidms |
|
16 |
15
|
adantl |
|
17 |
|
breq |
|
18 |
17
|
ad2antlr |
|
19 |
16 18
|
mpbird |
|
20 |
|
fnfun |
|
21 |
7 20
|
syl |
|
22 |
7
|
fndmd |
|
23 |
22
|
eleq2d |
|
24 |
23
|
biimpar |
|
25 |
|
funopfvb |
|
26 |
21 24 25
|
syl2an2r |
|
27 |
26
|
bicomd |
|
28 |
|
df-br |
|
29 |
|
eqcom |
|
30 |
27 28 29
|
3bitr4g |
|
31 |
30
|
biimpd |
|
32 |
|
df-br |
|
33 |
|
fnfun |
|
34 |
10 33
|
syl |
|
35 |
10
|
fndmd |
|
36 |
35
|
eleq2d |
|
37 |
36
|
biimpar |
|
38 |
|
funopfvb |
|
39 |
34 37 38
|
syl2an2r |
|
40 |
32 39
|
bitr4id |
|
41 |
|
vex |
|
42 |
|
vex |
|
43 |
41 42
|
brcnv |
|
44 |
|
eqcom |
|
45 |
40 43 44
|
3bitr4g |
|
46 |
45
|
biimpd |
|
47 |
31 46
|
anim12d |
|
48 |
47
|
eximdv |
|
49 |
42 42
|
brco |
|
50 |
|
fvex |
|
51 |
50
|
eqvinc |
|
52 |
48 49 51
|
3imtr4g |
|
53 |
52
|
adantlr |
|
54 |
19 53
|
mpd |
|
55 |
8 11 54
|
eqfnfvd |
|
56 |
55
|
eqcomd |
|
57 |
56
|
ex |
|
58 |
5 57
|
impbid |
|