Metamath Proof Explorer


Theorem f1eqcocnvOLD

Description: Obsolete version of f1eqcocnv as of 29-May-2024. (Contributed by Stefan O'Rear, 12-Feb-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion f1eqcocnvOLD F : A 1-1 B G : A 1-1 B F = G F -1 G = I A

Proof

Step Hyp Ref Expression
1 f1cocnv1 F : A 1-1 B F -1 F = I A
2 coeq2 F = G F -1 F = F -1 G
3 2 eqeq1d F = G F -1 F = I A F -1 G = I A
4 1 3 syl5ibcom F : A 1-1 B F = G F -1 G = I A
5 4 adantr F : A 1-1 B G : A 1-1 B F = G F -1 G = I A
6 f1fn G : A 1-1 B G Fn A
7 6 adantl F : A 1-1 B G : A 1-1 B G Fn A
8 7 adantr F : A 1-1 B G : A 1-1 B F -1 G = I A G Fn A
9 f1fn F : A 1-1 B F Fn A
10 9 adantr F : A 1-1 B G : A 1-1 B F Fn A
11 10 adantr F : A 1-1 B G : A 1-1 B F -1 G = I A F Fn A
12 equid x = x
13 resieq x A x A x I A x x = x
14 12 13 mpbiri x A x A x I A x
15 14 anidms x A x I A x
16 15 adantl F : A 1-1 B G : A 1-1 B F -1 G = I A x A x I A x
17 breq F -1 G = I A x F -1 G x x I A x
18 17 ad2antlr F : A 1-1 B G : A 1-1 B F -1 G = I A x A x F -1 G x x I A x
19 16 18 mpbird F : A 1-1 B G : A 1-1 B F -1 G = I A x A x F -1 G x
20 fnfun G Fn A Fun G
21 7 20 syl F : A 1-1 B G : A 1-1 B Fun G
22 fndm G Fn A dom G = A
23 7 22 syl F : A 1-1 B G : A 1-1 B dom G = A
24 23 eleq2d F : A 1-1 B G : A 1-1 B x dom G x A
25 24 biimpar F : A 1-1 B G : A 1-1 B x A x dom G
26 funopfvb Fun G x dom G G x = y x y G
27 21 25 26 syl2an2r F : A 1-1 B G : A 1-1 B x A G x = y x y G
28 27 bicomd F : A 1-1 B G : A 1-1 B x A x y G G x = y
29 df-br x G y x y G
30 eqcom y = G x G x = y
31 28 29 30 3bitr4g F : A 1-1 B G : A 1-1 B x A x G y y = G x
32 31 biimpd F : A 1-1 B G : A 1-1 B x A x G y y = G x
33 df-br x F y x y F
34 fnfun F Fn A Fun F
35 10 34 syl F : A 1-1 B G : A 1-1 B Fun F
36 fndm F Fn A dom F = A
37 10 36 syl F : A 1-1 B G : A 1-1 B dom F = A
38 37 eleq2d F : A 1-1 B G : A 1-1 B x dom F x A
39 38 biimpar F : A 1-1 B G : A 1-1 B x A x dom F
40 funopfvb Fun F x dom F F x = y x y F
41 35 39 40 syl2an2r F : A 1-1 B G : A 1-1 B x A F x = y x y F
42 33 41 bitr4id F : A 1-1 B G : A 1-1 B x A x F y F x = y
43 vex y V
44 vex x V
45 43 44 brcnv y F -1 x x F y
46 eqcom y = F x F x = y
47 42 45 46 3bitr4g F : A 1-1 B G : A 1-1 B x A y F -1 x y = F x
48 47 biimpd F : A 1-1 B G : A 1-1 B x A y F -1 x y = F x
49 32 48 anim12d F : A 1-1 B G : A 1-1 B x A x G y y F -1 x y = G x y = F x
50 49 eximdv F : A 1-1 B G : A 1-1 B x A y x G y y F -1 x y y = G x y = F x
51 44 44 brco x F -1 G x y x G y y F -1 x
52 fvex G x V
53 52 eqvinc G x = F x y y = G x y = F x
54 50 51 53 3imtr4g F : A 1-1 B G : A 1-1 B x A x F -1 G x G x = F x
55 54 adantlr F : A 1-1 B G : A 1-1 B F -1 G = I A x A x F -1 G x G x = F x
56 19 55 mpd F : A 1-1 B G : A 1-1 B F -1 G = I A x A G x = F x
57 8 11 56 eqfnfvd F : A 1-1 B G : A 1-1 B F -1 G = I A G = F
58 57 eqcomd F : A 1-1 B G : A 1-1 B F -1 G = I A F = G
59 58 ex F : A 1-1 B G : A 1-1 B F -1 G = I A F = G
60 5 59 impbid F : A 1-1 B G : A 1-1 B F = G F -1 G = I A