Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1f1orn
Next ⟩
f1ocnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1f1orn
Description:
A one-to-one function maps one-to-one onto its range.
(Contributed by
NM
, 4-Sep-2004)
Ref
Expression
Assertion
f1f1orn
⊢
F
:
A
⟶
1-1
B
→
F
:
A
⟶
1-1 onto
ran
⁡
F
Proof
Step
Hyp
Ref
Expression
1
f1fn
⊢
F
:
A
⟶
1-1
B
→
F
Fn
A
2
df-f1
⊢
F
:
A
⟶
1-1
B
↔
F
:
A
⟶
B
∧
Fun
⁡
F
-1
3
2
simprbi
⊢
F
:
A
⟶
1-1
B
→
Fun
⁡
F
-1
4
f1orn
⊢
F
:
A
⟶
1-1 onto
ran
⁡
F
↔
F
Fn
A
∧
Fun
⁡
F
-1
5
1
3
4
sylanbrc
⊢
F
:
A
⟶
1-1
B
→
F
:
A
⟶
1-1 onto
ran
⁡
F