Metamath Proof Explorer


Theorem f1f1orn

Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004)

Ref Expression
Assertion f1f1orn F : A 1-1 B F : A 1-1 onto ran F

Proof

Step Hyp Ref Expression
1 f1fn F : A 1-1 B F Fn A
2 df-f1 F : A 1-1 B F : A B Fun F -1
3 2 simprbi F : A 1-1 B Fun F -1
4 f1orn F : A 1-1 onto ran F F Fn A Fun F -1
5 1 3 4 sylanbrc F : A 1-1 B F : A 1-1 onto ran F