Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1fn
Next ⟩
f1fun
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1fn
Description:
A one-to-one mapping is a function on its domain.
(Contributed by
NM
, 8-Mar-2014)
Ref
Expression
Assertion
f1fn
⊢
F
:
A
⟶
1-1
B
→
F
Fn
A
Proof
Step
Hyp
Ref
Expression
1
f1f
⊢
F
:
A
⟶
1-1
B
→
F
:
A
⟶
B
2
1
ffnd
⊢
F
:
A
⟶
1-1
B
→
F
Fn
A