Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1fun
Next ⟩
f1rel
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1fun
Description:
A one-to-one mapping is a function.
(Contributed by
NM
, 8-Mar-2014)
Ref
Expression
Assertion
f1fun
⊢
F
:
A
⟶
1-1
B
→
Fun
⁡
F
Proof
Step
Hyp
Ref
Expression
1
f1fn
⊢
F
:
A
⟶
1-1
B
→
F
Fn
A
2
fnfun
⊢
F
Fn
A
→
Fun
⁡
F
3
1
2
syl
⊢
F
:
A
⟶
1-1
B
→
Fun
⁡
F