Metamath Proof Explorer


Theorem f1fveq

Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997)

Ref Expression
Assertion f1fveq F : A 1-1 B C A D A F C = F D C = D

Proof

Step Hyp Ref Expression
1 f1veqaeq F : A 1-1 B C A D A F C = F D C = D
2 fveq2 C = D F C = F D
3 1 2 impbid1 F : A 1-1 B C A D A F C = F D C = D