Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1fveq
Next ⟩
f1elima
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1fveq
Description:
Equality of function values for a one-to-one function.
(Contributed by
NM
, 11-Feb-1997)
Ref
Expression
Assertion
f1fveq
⊢
F
:
A
⟶
1-1
B
∧
C
∈
A
∧
D
∈
A
→
F
⁡
C
=
F
⁡
D
↔
C
=
D
Proof
Step
Hyp
Ref
Expression
1
f1veqaeq
⊢
F
:
A
⟶
1-1
B
∧
C
∈
A
∧
D
∈
A
→
F
⁡
C
=
F
⁡
D
→
C
=
D
2
fveq2
⊢
C
=
D
→
F
⁡
C
=
F
⁡
D
3
1
2
impbid1
⊢
F
:
A
⟶
1-1
B
∧
C
∈
A
∧
D
∈
A
→
F
⁡
C
=
F
⁡
D
↔
C
=
D