Metamath Proof Explorer


Theorem f1imaen2g

Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng does not need ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion f1imaen2g F : A 1-1 B B V C A C V F C C

Proof

Step Hyp Ref Expression
1 simprr F : A 1-1 B B V C A C V C V
2 simplr F : A 1-1 B B V C A C V B V
3 f1f F : A 1-1 B F : A B
4 fimass F : A B F C B
5 3 4 syl F : A 1-1 B F C B
6 5 ad2antrr F : A 1-1 B B V C A C V F C B
7 2 6 ssexd F : A 1-1 B B V C A C V F C V
8 f1ores F : A 1-1 B C A F C : C 1-1 onto F C
9 8 ad2ant2r F : A 1-1 B B V C A C V F C : C 1-1 onto F C
10 f1oen2g C V F C V F C : C 1-1 onto F C C F C
11 1 7 9 10 syl3anc F : A 1-1 B B V C A C V C F C
12 11 ensymd F : A 1-1 B B V C A C V F C C