Metamath Proof Explorer


Theorem f1imaeng

Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion f1imaeng F : A 1-1 B C A C V F C C

Proof

Step Hyp Ref Expression
1 f1ores F : A 1-1 B C A F C : C 1-1 onto F C
2 f1oeng C V F C : C 1-1 onto F C C F C
3 2 ancoms F C : C 1-1 onto F C C V C F C
4 1 3 stoic3 F : A 1-1 B C A C V C F C
5 4 ensymd F : A 1-1 B C A C V F C C