Metamath Proof Explorer


Theorem f1imaeq

Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion f1imaeq F : A 1-1 B C A D A F C = F D C = D

Proof

Step Hyp Ref Expression
1 f1imass F : A 1-1 B C A D A F C F D C D
2 f1imass F : A 1-1 B D A C A F D F C D C
3 2 ancom2s F : A 1-1 B C A D A F D F C D C
4 1 3 anbi12d F : A 1-1 B C A D A F C F D F D F C C D D C
5 eqss F C = F D F C F D F D F C
6 eqss C = D C D D C
7 4 5 6 3bitr4g F : A 1-1 B C A D A F C = F D C = D