Metamath Proof Explorer


Theorem f1imapss

Description: Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion f1imapss F : A 1-1 B C A D A F C F D C D

Proof

Step Hyp Ref Expression
1 f1imass F : A 1-1 B C A D A F C F D C D
2 f1imaeq F : A 1-1 B C A D A F C = F D C = D
3 2 notbid F : A 1-1 B C A D A ¬ F C = F D ¬ C = D
4 1 3 anbi12d F : A 1-1 B C A D A F C F D ¬ F C = F D C D ¬ C = D
5 dfpss2 F C F D F C F D ¬ F C = F D
6 dfpss2 C D C D ¬ C = D
7 4 5 6 3bitr4g F : A 1-1 B C A D A F C F D C D