Metamath Proof Explorer


Theorem f1imass

Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion f1imass F : A 1-1 B C A D A F C F D C D

Proof

Step Hyp Ref Expression
1 simplrl F : A 1-1 B C A D A F C F D C A
2 1 sseld F : A 1-1 B C A D A F C F D a C a A
3 simplr F : A 1-1 B C A D A F C F D a A F C F D
4 3 sseld F : A 1-1 B C A D A F C F D a A F a F C F a F D
5 simplll F : A 1-1 B C A D A F C F D a A F : A 1-1 B
6 simpr F : A 1-1 B C A D A F C F D a A a A
7 simp1rl F : A 1-1 B C A D A F C F D a A C A
8 7 3expa F : A 1-1 B C A D A F C F D a A C A
9 f1elima F : A 1-1 B a A C A F a F C a C
10 5 6 8 9 syl3anc F : A 1-1 B C A D A F C F D a A F a F C a C
11 simp1rr F : A 1-1 B C A D A F C F D a A D A
12 11 3expa F : A 1-1 B C A D A F C F D a A D A
13 f1elima F : A 1-1 B a A D A F a F D a D
14 5 6 12 13 syl3anc F : A 1-1 B C A D A F C F D a A F a F D a D
15 4 10 14 3imtr3d F : A 1-1 B C A D A F C F D a A a C a D
16 15 ex F : A 1-1 B C A D A F C F D a A a C a D
17 2 16 syld F : A 1-1 B C A D A F C F D a C a C a D
18 17 pm2.43d F : A 1-1 B C A D A F C F D a C a D
19 18 ssrdv F : A 1-1 B C A D A F C F D C D
20 19 ex F : A 1-1 B C A D A F C F D C D
21 imass2 C D F C F D
22 20 21 impbid1 F : A 1-1 B C A D A F C F D C D