Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1o0
Next ⟩
f1oi
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1o0
Description:
One-to-one onto mapping of the empty set.
(Contributed by
NM
, 10-Sep-2004)
Ref
Expression
Assertion
f1o0
⊢
∅
:
∅
⟶
1-1 onto
∅
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
∅
=
∅
2
f1o00
⊢
∅
:
∅
⟶
1-1 onto
∅
↔
∅
=
∅
∧
∅
=
∅
3
1
1
2
mpbir2an
⊢
∅
:
∅
⟶
1-1 onto
∅