Metamath Proof Explorer


Theorem f1o00

Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998)

Ref Expression
Assertion f1o00 F:1-1 ontoAF=A=

Proof

Step Hyp Ref Expression
1 dff1o4 F:1-1 ontoAFFnF-1FnA
2 fn0 FFnF=
3 2 biimpi FFnF=
4 3 adantr FFnF-1FnAF=
5 cnveq F=F-1=-1
6 cnv0 -1=
7 5 6 eqtrdi F=F-1=
8 2 7 sylbi FFnF-1=
9 8 fneq1d FFnF-1FnAFnA
10 9 biimpa FFnF-1FnAFnA
11 10 fndmd FFnF-1FnAdom=A
12 dm0 dom=
13 11 12 eqtr3di FFnF-1FnAA=
14 4 13 jca FFnF-1FnAF=A=
15 2 biimpri F=FFn
16 15 adantr F=A=FFn
17 eqid =
18 fn0 Fn=
19 17 18 mpbir Fn
20 7 fneq1d F=F-1FnAFnA
21 fneq2 A=FnAFn
22 20 21 sylan9bb F=A=F-1FnAFn
23 19 22 mpbiri F=A=F-1FnA
24 16 23 jca F=A=FFnF-1FnA
25 14 24 impbii FFnF-1FnAF=A=
26 1 25 bitri F:1-1 ontoAF=A=