Metamath Proof Explorer


Theorem f1o2d

Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Hypotheses f1od.1 F = x A C
f1o2d.2 φ x A C B
f1o2d.3 φ y B D A
f1o2d.4 φ x A y B x = D y = C
Assertion f1o2d φ F : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1od.1 F = x A C
2 f1o2d.2 φ x A C B
3 f1o2d.3 φ y B D A
4 f1o2d.4 φ x A y B x = D y = C
5 1 2 3 4 f1ocnv2d φ F : A 1-1 onto B F -1 = y B D
6 5 simpld φ F : A 1-1 onto B