Metamath Proof Explorer


Theorem f1o2d2

Description: Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses f1o2d2.f F = x A , y B C
f1o2d2.r φ x A y B C D
f1o2d2.i φ z D I A
f1o2d2.j φ z D J B
f1o2d2.1 φ x A y B z D x = I y = J z = C
Assertion f1o2d2 φ F : A × B 1-1 onto D

Proof

Step Hyp Ref Expression
1 f1o2d2.f F = x A , y B C
2 f1o2d2.r φ x A y B C D
3 f1o2d2.i φ z D I A
4 f1o2d2.j φ z D J B
5 f1o2d2.1 φ x A y B z D x = I y = J z = C
6 mpompts x A , y B C = w A × B 1 st w / x 2 nd w / y C
7 1 6 eqtri F = w A × B 1 st w / x 2 nd w / y C
8 xp1st w A × B 1 st w A
9 xp2nd w A × B 2 nd w B
10 2 anassrs φ x A y B C D
11 10 ralrimiva φ x A y B C D
12 rspcsbela 2 nd w B y B C D 2 nd w / y C D
13 9 11 12 syl2anr φ x A w A × B 2 nd w / y C D
14 13 an32s φ w A × B x A 2 nd w / y C D
15 14 ralrimiva φ w A × B x A 2 nd w / y C D
16 rspcsbela 1 st w A x A 2 nd w / y C D 1 st w / x 2 nd w / y C D
17 8 15 16 syl2an2 φ w A × B 1 st w / x 2 nd w / y C D
18 3 4 opelxpd φ z D I J A × B
19 9 ad2antrl φ w A × B z D 2 nd w B
20 sbceq2g 2 nd w B [˙ 2 nd w / y]˙ z = C z = 2 nd w / y C
21 19 20 syl φ w A × B z D [˙ 2 nd w / y]˙ z = C z = 2 nd w / y C
22 21 sbcbidv φ w A × B z D [˙ 1 st w / x]˙ [˙ 2 nd w / y]˙ z = C [˙ 1 st w / x]˙ z = 2 nd w / y C
23 8 ad2antrl φ w A × B z D 1 st w A
24 19 adantr φ w A × B z D x = 1 st w 2 nd w B
25 eqop w A × B w = I J 1 st w = I 2 nd w = J
26 25 ad2antrl φ w A × B z D w = I J 1 st w = I 2 nd w = J
27 eqeq1 x = 1 st w x = I 1 st w = I
28 eqeq1 y = 2 nd w y = J 2 nd w = J
29 27 28 bi2anan9 x = 1 st w y = 2 nd w x = I y = J 1 st w = I 2 nd w = J
30 29 bicomd x = 1 st w y = 2 nd w 1 st w = I 2 nd w = J x = I y = J
31 26 30 sylan9bb φ w A × B z D x = 1 st w y = 2 nd w w = I J x = I y = J
32 31 anassrs φ w A × B z D x = 1 st w y = 2 nd w w = I J x = I y = J
33 eleq1 x = 1 st w x A 1 st w A
34 8 33 syl5ibrcom w A × B x = 1 st w x A
35 34 imp w A × B x = 1 st w x A
36 eleq1 y = 2 nd w y B 2 nd w B
37 9 36 syl5ibrcom w A × B y = 2 nd w y B
38 37 imp w A × B y = 2 nd w y B
39 35 38 anim12dan w A × B x = 1 st w y = 2 nd w x A y B
40 39 3impb w A × B x = 1 st w y = 2 nd w x A y B
41 40 3adant1r w A × B z D x = 1 st w y = 2 nd w x A y B
42 simp1r w A × B z D x = 1 st w y = 2 nd w z D
43 41 42 jca w A × B z D x = 1 st w y = 2 nd w x A y B z D
44 43 5 sylan2 φ w A × B z D x = 1 st w y = 2 nd w x = I y = J z = C
45 44 3anassrs φ w A × B z D x = 1 st w y = 2 nd w x = I y = J z = C
46 32 45 bitr2d φ w A × B z D x = 1 st w y = 2 nd w z = C w = I J
47 24 46 sbcied φ w A × B z D x = 1 st w [˙ 2 nd w / y]˙ z = C w = I J
48 23 47 sbcied φ w A × B z D [˙ 1 st w / x]˙ [˙ 2 nd w / y]˙ z = C w = I J
49 sbceq2g 1 st w A [˙ 1 st w / x]˙ z = 2 nd w / y C z = 1 st w / x 2 nd w / y C
50 23 49 syl φ w A × B z D [˙ 1 st w / x]˙ z = 2 nd w / y C z = 1 st w / x 2 nd w / y C
51 22 48 50 3bitr3d φ w A × B z D w = I J z = 1 st w / x 2 nd w / y C
52 7 17 18 51 f1o2d φ F : A × B 1-1 onto D