Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
|
2 |
|
fo2ndf |
|
3 |
1 2
|
syl |
|
4 |
|
f2ndf |
|
5 |
1 4
|
syl |
|
6 |
|
fssxp |
|
7 |
1 6
|
syl |
|
8 |
|
ssel2 |
|
9 |
|
elxp2 |
|
10 |
8 9
|
sylib |
|
11 |
|
ssel2 |
|
12 |
|
elxp2 |
|
13 |
11 12
|
sylib |
|
14 |
10 13
|
anim12dan |
|
15 |
|
fvres |
|
16 |
15
|
ad2antrr |
|
17 |
|
fvres |
|
18 |
17
|
ad2antlr |
|
19 |
16 18
|
eqeq12d |
|
20 |
|
vex |
|
21 |
|
vex |
|
22 |
20 21
|
op2nd |
|
23 |
|
vex |
|
24 |
|
vex |
|
25 |
23 24
|
op2nd |
|
26 |
22 25
|
eqeq12i |
|
27 |
|
f1fun |
|
28 |
|
funopfv |
|
29 |
|
funopfv |
|
30 |
28 29
|
anim12d |
|
31 |
27 30
|
syl |
|
32 |
|
eqcom |
|
33 |
32
|
biimpi |
|
34 |
|
eqcom |
|
35 |
34
|
biimpi |
|
36 |
33 35
|
eqeqan12d |
|
37 |
|
simpl |
|
38 |
|
simpl |
|
39 |
37 38
|
anim12i |
|
40 |
|
f1veqaeq |
|
41 |
39 40
|
sylan2 |
|
42 |
|
opeq12 |
|
43 |
42
|
ex |
|
44 |
41 43
|
syl6 |
|
45 |
44
|
com23 |
|
46 |
45
|
ex |
|
47 |
46
|
com14 |
|
48 |
36 47
|
syl6bi |
|
49 |
48
|
com14 |
|
50 |
49
|
pm2.43i |
|
51 |
50
|
com14 |
|
52 |
51
|
com23 |
|
53 |
31 52
|
syld |
|
54 |
53
|
com13 |
|
55 |
54
|
impcom |
|
56 |
55
|
com23 |
|
57 |
26 56
|
syl5bi |
|
58 |
19 57
|
sylbid |
|
59 |
58
|
com23 |
|
60 |
59
|
ex |
|
61 |
60
|
adantl |
|
62 |
61
|
com12 |
|
63 |
62
|
ad4ant13 |
|
64 |
|
eleq1 |
|
65 |
64
|
ad2antlr |
|
66 |
|
eleq1 |
|
67 |
65 66
|
bi2anan9 |
|
68 |
67
|
anbi2d |
|
69 |
|
fveq2 |
|
70 |
69
|
ad2antlr |
|
71 |
|
fveq2 |
|
72 |
70 71
|
eqeqan12d |
|
73 |
|
simpllr |
|
74 |
|
simpr |
|
75 |
73 74
|
eqeq12d |
|
76 |
72 75
|
imbi12d |
|
77 |
76
|
imbi2d |
|
78 |
63 68 77
|
3imtr4d |
|
79 |
78
|
ex |
|
80 |
79
|
rexlimdvva |
|
81 |
80
|
ex |
|
82 |
81
|
rexlimivv |
|
83 |
82
|
imp |
|
84 |
14 83
|
mpcom |
|
85 |
84
|
ex |
|
86 |
85
|
com23 |
|
87 |
7 86
|
mpcom |
|
88 |
87
|
ralrimivv |
|
89 |
|
dff13 |
|
90 |
5 88 89
|
sylanbrc |
|
91 |
|
df-f1 |
|
92 |
91
|
simprbi |
|
93 |
90 92
|
syl |
|
94 |
|
dff1o3 |
|
95 |
3 93 94
|
sylanbrc |
|