Metamath Proof Explorer


Theorem f1o2ndf1

Description: The 2nd (second component of an ordered pair) function restricted to a one-to-one function F is a one-to-one function from F onto the range of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion f1o2ndf1 F : A 1-1 B 2 nd F : F 1-1 onto ran F

Proof

Step Hyp Ref Expression
1 f1f F : A 1-1 B F : A B
2 fo2ndf F : A B 2 nd F : F onto ran F
3 1 2 syl F : A 1-1 B 2 nd F : F onto ran F
4 f2ndf F : A B 2 nd F : F B
5 1 4 syl F : A 1-1 B 2 nd F : F B
6 fssxp F : A B F A × B
7 1 6 syl F : A 1-1 B F A × B
8 ssel2 F A × B x F x A × B
9 elxp2 x A × B a A v B x = a v
10 8 9 sylib F A × B x F a A v B x = a v
11 ssel2 F A × B y F y A × B
12 elxp2 y A × B b A w B y = b w
13 11 12 sylib F A × B y F b A w B y = b w
14 10 13 anim12dan F A × B x F y F a A v B x = a v b A w B y = b w
15 fvres a v F 2 nd F a v = 2 nd a v
16 15 ad2antrr a v F b w F a A v B b A w B 2 nd F a v = 2 nd a v
17 fvres b w F 2 nd F b w = 2 nd b w
18 17 ad2antlr a v F b w F a A v B b A w B 2 nd F b w = 2 nd b w
19 16 18 eqeq12d a v F b w F a A v B b A w B 2 nd F a v = 2 nd F b w 2 nd a v = 2 nd b w
20 vex a V
21 vex v V
22 20 21 op2nd 2 nd a v = v
23 vex b V
24 vex w V
25 23 24 op2nd 2 nd b w = w
26 22 25 eqeq12i 2 nd a v = 2 nd b w v = w
27 f1fun F : A 1-1 B Fun F
28 funopfv Fun F a v F F a = v
29 funopfv Fun F b w F F b = w
30 28 29 anim12d Fun F a v F b w F F a = v F b = w
31 27 30 syl F : A 1-1 B a v F b w F F a = v F b = w
32 eqcom F a = v v = F a
33 32 biimpi F a = v v = F a
34 eqcom F b = w w = F b
35 34 biimpi F b = w w = F b
36 33 35 eqeqan12d F a = v F b = w v = w F a = F b
37 simpl a A v B a A
38 simpl b A w B b A
39 37 38 anim12i a A v B b A w B a A b A
40 f1veqaeq F : A 1-1 B a A b A F a = F b a = b
41 39 40 sylan2 F : A 1-1 B a A v B b A w B F a = F b a = b
42 opeq12 a = b v = w a v = b w
43 42 ex a = b v = w a v = b w
44 41 43 syl6 F : A 1-1 B a A v B b A w B F a = F b v = w a v = b w
45 44 com23 F : A 1-1 B a A v B b A w B v = w F a = F b a v = b w
46 45 ex F : A 1-1 B a A v B b A w B v = w F a = F b a v = b w
47 46 com14 F a = F b a A v B b A w B v = w F : A 1-1 B a v = b w
48 36 47 syl6bi F a = v F b = w v = w a A v B b A w B v = w F : A 1-1 B a v = b w
49 48 com14 v = w v = w a A v B b A w B F a = v F b = w F : A 1-1 B a v = b w
50 49 pm2.43i v = w a A v B b A w B F a = v F b = w F : A 1-1 B a v = b w
51 50 com14 F : A 1-1 B a A v B b A w B F a = v F b = w v = w a v = b w
52 51 com23 F : A 1-1 B F a = v F b = w a A v B b A w B v = w a v = b w
53 31 52 syld F : A 1-1 B a v F b w F a A v B b A w B v = w a v = b w
54 53 com13 a A v B b A w B a v F b w F F : A 1-1 B v = w a v = b w
55 54 impcom a v F b w F a A v B b A w B F : A 1-1 B v = w a v = b w
56 55 com23 a v F b w F a A v B b A w B v = w F : A 1-1 B a v = b w
57 26 56 syl5bi a v F b w F a A v B b A w B 2 nd a v = 2 nd b w F : A 1-1 B a v = b w
58 19 57 sylbid a v F b w F a A v B b A w B 2 nd F a v = 2 nd F b w F : A 1-1 B a v = b w
59 58 com23 a v F b w F a A v B b A w B F : A 1-1 B 2 nd F a v = 2 nd F b w a v = b w
60 59 ex a v F b w F a A v B b A w B F : A 1-1 B 2 nd F a v = 2 nd F b w a v = b w
61 60 adantl F A × B a v F b w F a A v B b A w B F : A 1-1 B 2 nd F a v = 2 nd F b w a v = b w
62 61 com12 a A v B b A w B F A × B a v F b w F F : A 1-1 B 2 nd F a v = 2 nd F b w a v = b w
63 62 ad4ant13 a A v B x = a v b A w B y = b w F A × B a v F b w F F : A 1-1 B 2 nd F a v = 2 nd F b w a v = b w
64 eleq1 x = a v x F a v F
65 64 ad2antlr a A v B x = a v b A w B x F a v F
66 eleq1 y = b w y F b w F
67 65 66 bi2anan9 a A v B x = a v b A w B y = b w x F y F a v F b w F
68 67 anbi2d a A v B x = a v b A w B y = b w F A × B x F y F F A × B a v F b w F
69 fveq2 x = a v 2 nd F x = 2 nd F a v
70 69 ad2antlr a A v B x = a v b A w B 2 nd F x = 2 nd F a v
71 fveq2 y = b w 2 nd F y = 2 nd F b w
72 70 71 eqeqan12d a A v B x = a v b A w B y = b w 2 nd F x = 2 nd F y 2 nd F a v = 2 nd F b w
73 simpllr a A v B x = a v b A w B y = b w x = a v
74 simpr a A v B x = a v b A w B y = b w y = b w
75 73 74 eqeq12d a A v B x = a v b A w B y = b w x = y a v = b w
76 72 75 imbi12d a A v B x = a v b A w B y = b w 2 nd F x = 2 nd F y x = y 2 nd F a v = 2 nd F b w a v = b w
77 76 imbi2d a A v B x = a v b A w B y = b w F : A 1-1 B 2 nd F x = 2 nd F y x = y F : A 1-1 B 2 nd F a v = 2 nd F b w a v = b w
78 63 68 77 3imtr4d a A v B x = a v b A w B y = b w F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
79 78 ex a A v B x = a v b A w B y = b w F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
80 79 rexlimdvva a A v B x = a v b A w B y = b w F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
81 80 ex a A v B x = a v b A w B y = b w F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
82 81 rexlimivv a A v B x = a v b A w B y = b w F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
83 82 imp a A v B x = a v b A w B y = b w F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
84 14 83 mpcom F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
85 84 ex F A × B x F y F F : A 1-1 B 2 nd F x = 2 nd F y x = y
86 85 com23 F A × B F : A 1-1 B x F y F 2 nd F x = 2 nd F y x = y
87 7 86 mpcom F : A 1-1 B x F y F 2 nd F x = 2 nd F y x = y
88 87 ralrimivv F : A 1-1 B x F y F 2 nd F x = 2 nd F y x = y
89 dff13 2 nd F : F 1-1 B 2 nd F : F B x F y F 2 nd F x = 2 nd F y x = y
90 5 88 89 sylanbrc F : A 1-1 B 2 nd F : F 1-1 B
91 df-f1 2 nd F : F 1-1 B 2 nd F : F B Fun 2 nd F -1
92 91 simprbi 2 nd F : F 1-1 B Fun 2 nd F -1
93 90 92 syl F : A 1-1 B Fun 2 nd F -1
94 dff1o3 2 nd F : F 1-1 onto ran F 2 nd F : F onto ran F Fun 2 nd F -1
95 3 93 94 sylanbrc F : A 1-1 B 2 nd F : F 1-1 onto ran F