Metamath Proof Explorer


Theorem f1o2sn

Description: A singleton consisting in a nested ordered pair is a one-to-one function from the cartesian product of two singletons onto a singleton (case where the two singletons are equal). (Contributed by AV, 15-Aug-2019)

Ref Expression
Assertion f1o2sn E V X W E E X : E × E 1-1 onto X

Proof

Step Hyp Ref Expression
1 opex E E V
2 simpr E V X W X W
3 f1osng E E V X W E E X : E E 1-1 onto X
4 1 2 3 sylancr E V X W E E X : E E 1-1 onto X
5 xpsng E V E V E × E = E E
6 5 anidms E V E × E = E E
7 6 eqcomd E V E E = E × E
8 7 adantr E V X W E E = E × E
9 8 f1oeq2d E V X W E E X : E E 1-1 onto X E E X : E × E 1-1 onto X
10 4 9 mpbid E V X W E E X : E × E 1-1 onto X