Metamath Proof Explorer


Theorem f1ocnvb

Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion f1ocnvb Rel F F : A 1-1 onto B F -1 : B 1-1 onto A

Proof

Step Hyp Ref Expression
1 f1ocnv F : A 1-1 onto B F -1 : B 1-1 onto A
2 f1ocnv F -1 : B 1-1 onto A F -1 -1 : A 1-1 onto B
3 dfrel2 Rel F F -1 -1 = F
4 f1oeq1 F -1 -1 = F F -1 -1 : A 1-1 onto B F : A 1-1 onto B
5 3 4 sylbi Rel F F -1 -1 : A 1-1 onto B F : A 1-1 onto B
6 2 5 syl5ib Rel F F -1 : B 1-1 onto A F : A 1-1 onto B
7 1 6 impbid2 Rel F F : A 1-1 onto B F -1 : B 1-1 onto A