Metamath Proof Explorer


Theorem f1ocnvd

Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses f1od.1 F = x A C
f1od.2 φ x A C W
f1od.3 φ y B D X
f1od.4 φ x A y = C y B x = D
Assertion f1ocnvd φ F : A 1-1 onto B F -1 = y B D

Proof

Step Hyp Ref Expression
1 f1od.1 F = x A C
2 f1od.2 φ x A C W
3 f1od.3 φ y B D X
4 f1od.4 φ x A y = C y B x = D
5 2 ralrimiva φ x A C W
6 1 fnmpt x A C W F Fn A
7 5 6 syl φ F Fn A
8 3 ralrimiva φ y B D X
9 eqid y B D = y B D
10 9 fnmpt y B D X y B D Fn B
11 8 10 syl φ y B D Fn B
12 4 opabbidv φ y x | x A y = C = y x | y B x = D
13 df-mpt x A C = x y | x A y = C
14 1 13 eqtri F = x y | x A y = C
15 14 cnveqi F -1 = x y | x A y = C -1
16 cnvopab x y | x A y = C -1 = y x | x A y = C
17 15 16 eqtri F -1 = y x | x A y = C
18 df-mpt y B D = y x | y B x = D
19 12 17 18 3eqtr4g φ F -1 = y B D
20 19 fneq1d φ F -1 Fn B y B D Fn B
21 11 20 mpbird φ F -1 Fn B
22 dff1o4 F : A 1-1 onto B F Fn A F -1 Fn B
23 7 21 22 sylanbrc φ F : A 1-1 onto B
24 23 19 jca φ F : A 1-1 onto B F -1 = y B D