Metamath Proof Explorer


Theorem f1ocnvdm

Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006)

Ref Expression
Assertion f1ocnvdm F : A 1-1 onto B C B F -1 C A

Proof

Step Hyp Ref Expression
1 f1ocnv F : A 1-1 onto B F -1 : B 1-1 onto A
2 f1of F -1 : B 1-1 onto A F -1 : B A
3 1 2 syl F : A 1-1 onto B F -1 : B A
4 3 ffvelrnda F : A 1-1 onto B C B F -1 C A