Metamath Proof Explorer


Theorem f1od

Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Hypotheses f1od.1 F = x A C
f1od.2 φ x A C W
f1od.3 φ y B D X
f1od.4 φ x A y = C y B x = D
Assertion f1od φ F : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1od.1 F = x A C
2 f1od.2 φ x A C W
3 f1od.3 φ y B D X
4 f1od.4 φ x A y = C y B x = D
5 1 2 3 4 f1ocnvd φ F : A 1-1 onto B F -1 = y B D
6 5 simpld φ F : A 1-1 onto B