Metamath Proof Explorer


Theorem f1od2

Description: Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017)

Ref Expression
Hypotheses f1od2.1 F = x A , y B C
f1od2.2 φ x A y B C W
f1od2.3 φ z D I X J Y
f1od2.4 φ x A y B z = C z D x = I y = J
Assertion f1od2 φ F : A × B 1-1 onto D

Proof

Step Hyp Ref Expression
1 f1od2.1 F = x A , y B C
2 f1od2.2 φ x A y B C W
3 f1od2.3 φ z D I X J Y
4 f1od2.4 φ x A y B z = C z D x = I y = J
5 2 ralrimivva φ x A y B C W
6 1 fnmpo x A y B C W F Fn A × B
7 5 6 syl φ F Fn A × B
8 opelxpi I X J Y I J X × Y
9 3 8 syl φ z D I J X × Y
10 9 ralrimiva φ z D I J X × Y
11 eqid z D I J = z D I J
12 11 fnmpt z D I J X × Y z D I J Fn D
13 10 12 syl φ z D I J Fn D
14 elxp7 a A × B a V × V 1 st a A 2 nd a B
15 14 anbi1i a A × B z = 1 st a / x 2 nd a / y C a V × V 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C
16 anass a V × V 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C a V × V 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C
17 4 sbcbidv φ [˙ 2 nd a / y]˙ x A y B z = C [˙ 2 nd a / y]˙ z D x = I y = J
18 17 sbcbidv φ [˙ 1 st a / x]˙ [˙ 2 nd a / y]˙ x A y B z = C [˙ 1 st a / x]˙ [˙ 2 nd a / y]˙ z D x = I y = J
19 sbcan [˙ 2 nd a / y]˙ x A y B z = C [˙ 2 nd a / y]˙ x A y B [˙ 2 nd a / y]˙ z = C
20 sbcan [˙ 2 nd a / y]˙ x A y B [˙ 2 nd a / y]˙ x A [˙ 2 nd a / y]˙ y B
21 fvex 2 nd a V
22 sbcg 2 nd a V [˙ 2 nd a / y]˙ x A x A
23 21 22 ax-mp [˙ 2 nd a / y]˙ x A x A
24 sbcel1v [˙ 2 nd a / y]˙ y B 2 nd a B
25 23 24 anbi12i [˙ 2 nd a / y]˙ x A [˙ 2 nd a / y]˙ y B x A 2 nd a B
26 20 25 bitri [˙ 2 nd a / y]˙ x A y B x A 2 nd a B
27 sbceq2g 2 nd a V [˙ 2 nd a / y]˙ z = C z = 2 nd a / y C
28 21 27 ax-mp [˙ 2 nd a / y]˙ z = C z = 2 nd a / y C
29 26 28 anbi12i [˙ 2 nd a / y]˙ x A y B [˙ 2 nd a / y]˙ z = C x A 2 nd a B z = 2 nd a / y C
30 19 29 bitri [˙ 2 nd a / y]˙ x A y B z = C x A 2 nd a B z = 2 nd a / y C
31 30 sbcbii [˙ 1 st a / x]˙ [˙ 2 nd a / y]˙ x A y B z = C [˙ 1 st a / x]˙ x A 2 nd a B z = 2 nd a / y C
32 sbcan [˙ 1 st a / x]˙ x A 2 nd a B z = 2 nd a / y C [˙ 1 st a / x]˙ x A 2 nd a B [˙ 1 st a / x]˙ z = 2 nd a / y C
33 sbcan [˙ 1 st a / x]˙ x A 2 nd a B [˙ 1 st a / x]˙ x A [˙ 1 st a / x]˙ 2 nd a B
34 sbcel1v [˙ 1 st a / x]˙ x A 1 st a A
35 fvex 1 st a V
36 sbcg 1 st a V [˙ 1 st a / x]˙ 2 nd a B 2 nd a B
37 35 36 ax-mp [˙ 1 st a / x]˙ 2 nd a B 2 nd a B
38 34 37 anbi12i [˙ 1 st a / x]˙ x A [˙ 1 st a / x]˙ 2 nd a B 1 st a A 2 nd a B
39 33 38 bitri [˙ 1 st a / x]˙ x A 2 nd a B 1 st a A 2 nd a B
40 sbceq2g 1 st a V [˙ 1 st a / x]˙ z = 2 nd a / y C z = 1 st a / x 2 nd a / y C
41 35 40 ax-mp [˙ 1 st a / x]˙ z = 2 nd a / y C z = 1 st a / x 2 nd a / y C
42 39 41 anbi12i [˙ 1 st a / x]˙ x A 2 nd a B [˙ 1 st a / x]˙ z = 2 nd a / y C 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C
43 31 32 42 3bitri [˙ 1 st a / x]˙ [˙ 2 nd a / y]˙ x A y B z = C 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C
44 sbcan [˙ 2 nd a / y]˙ z D x = I y = J [˙ 2 nd a / y]˙ z D [˙ 2 nd a / y]˙ x = I y = J
45 sbcg 2 nd a V [˙ 2 nd a / y]˙ z D z D
46 21 45 ax-mp [˙ 2 nd a / y]˙ z D z D
47 sbcan [˙ 2 nd a / y]˙ x = I y = J [˙ 2 nd a / y]˙ x = I [˙ 2 nd a / y]˙ y = J
48 sbcg 2 nd a V [˙ 2 nd a / y]˙ x = I x = I
49 21 48 ax-mp [˙ 2 nd a / y]˙ x = I x = I
50 sbceq1g 2 nd a V [˙ 2 nd a / y]˙ y = J 2 nd a / y y = J
51 21 50 ax-mp [˙ 2 nd a / y]˙ y = J 2 nd a / y y = J
52 21 csbvargi 2 nd a / y y = 2 nd a
53 52 eqeq1i 2 nd a / y y = J 2 nd a = J
54 51 53 bitri [˙ 2 nd a / y]˙ y = J 2 nd a = J
55 49 54 anbi12i [˙ 2 nd a / y]˙ x = I [˙ 2 nd a / y]˙ y = J x = I 2 nd a = J
56 47 55 bitri [˙ 2 nd a / y]˙ x = I y = J x = I 2 nd a = J
57 46 56 anbi12i [˙ 2 nd a / y]˙ z D [˙ 2 nd a / y]˙ x = I y = J z D x = I 2 nd a = J
58 44 57 bitri [˙ 2 nd a / y]˙ z D x = I y = J z D x = I 2 nd a = J
59 58 sbcbii [˙ 1 st a / x]˙ [˙ 2 nd a / y]˙ z D x = I y = J [˙ 1 st a / x]˙ z D x = I 2 nd a = J
60 sbcan [˙ 1 st a / x]˙ z D x = I 2 nd a = J [˙ 1 st a / x]˙ z D [˙ 1 st a / x]˙ x = I 2 nd a = J
61 sbcg 1 st a V [˙ 1 st a / x]˙ z D z D
62 35 61 ax-mp [˙ 1 st a / x]˙ z D z D
63 sbcan [˙ 1 st a / x]˙ x = I 2 nd a = J [˙ 1 st a / x]˙ x = I [˙ 1 st a / x]˙ 2 nd a = J
64 sbceq1g 1 st a V [˙ 1 st a / x]˙ x = I 1 st a / x x = I
65 35 64 ax-mp [˙ 1 st a / x]˙ x = I 1 st a / x x = I
66 35 csbvargi 1 st a / x x = 1 st a
67 66 eqeq1i 1 st a / x x = I 1 st a = I
68 65 67 bitri [˙ 1 st a / x]˙ x = I 1 st a = I
69 sbcg 1 st a V [˙ 1 st a / x]˙ 2 nd a = J 2 nd a = J
70 35 69 ax-mp [˙ 1 st a / x]˙ 2 nd a = J 2 nd a = J
71 68 70 anbi12i [˙ 1 st a / x]˙ x = I [˙ 1 st a / x]˙ 2 nd a = J 1 st a = I 2 nd a = J
72 63 71 bitri [˙ 1 st a / x]˙ x = I 2 nd a = J 1 st a = I 2 nd a = J
73 62 72 anbi12i [˙ 1 st a / x]˙ z D [˙ 1 st a / x]˙ x = I 2 nd a = J z D 1 st a = I 2 nd a = J
74 59 60 73 3bitri [˙ 1 st a / x]˙ [˙ 2 nd a / y]˙ z D x = I y = J z D 1 st a = I 2 nd a = J
75 18 43 74 3bitr3g φ 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C z D 1 st a = I 2 nd a = J
76 75 anbi2d φ a V × V 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C a V × V z D 1 st a = I 2 nd a = J
77 16 76 syl5bb φ a V × V 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C a V × V z D 1 st a = I 2 nd a = J
78 xpss X × Y V × V
79 simprr φ z D a = I J a = I J
80 9 adantrr φ z D a = I J I J X × Y
81 79 80 eqeltrd φ z D a = I J a X × Y
82 78 81 sselid φ z D a = I J a V × V
83 82 ex φ z D a = I J a V × V
84 83 pm4.71rd φ z D a = I J a V × V z D a = I J
85 eqop a V × V a = I J 1 st a = I 2 nd a = J
86 85 anbi2d a V × V z D a = I J z D 1 st a = I 2 nd a = J
87 86 pm5.32i a V × V z D a = I J a V × V z D 1 st a = I 2 nd a = J
88 84 87 bitr2di φ a V × V z D 1 st a = I 2 nd a = J z D a = I J
89 77 88 bitrd φ a V × V 1 st a A 2 nd a B z = 1 st a / x 2 nd a / y C z D a = I J
90 15 89 syl5bb φ a A × B z = 1 st a / x 2 nd a / y C z D a = I J
91 90 opabbidv φ z a | a A × B z = 1 st a / x 2 nd a / y C = z a | z D a = I J
92 df-mpo x A , y B C = x y z | x A y B z = C
93 1 92 eqtri F = x y z | x A y B z = C
94 93 cnveqi F -1 = x y z | x A y B z = C -1
95 nfv i x A y B z = C
96 nfv j x A y B z = C
97 nfv x i A j B
98 nfcsb1v _ x i / x j / y C
99 98 nfeq2 x z = i / x j / y C
100 97 99 nfan x i A j B z = i / x j / y C
101 nfv y i A j B
102 nfcv _ y i
103 nfcsb1v _ y j / y C
104 102 103 nfcsbw _ y i / x j / y C
105 104 nfeq2 y z = i / x j / y C
106 101 105 nfan y i A j B z = i / x j / y C
107 simpl x = i y = j x = i
108 107 eleq1d x = i y = j x A i A
109 simpr x = i y = j y = j
110 109 eleq1d x = i y = j y B j B
111 108 110 anbi12d x = i y = j x A y B i A j B
112 csbeq1a y = j C = j / y C
113 csbeq1a x = i j / y C = i / x j / y C
114 112 113 sylan9eqr x = i y = j C = i / x j / y C
115 114 eqeq2d x = i y = j z = C z = i / x j / y C
116 111 115 anbi12d x = i y = j x A y B z = C i A j B z = i / x j / y C
117 95 96 100 106 116 cbvoprab12 x y z | x A y B z = C = i j z | i A j B z = i / x j / y C
118 117 cnveqi x y z | x A y B z = C -1 = i j z | i A j B z = i / x j / y C -1
119 eleq1 a = i j a A × B i j A × B
120 opelxp i j A × B i A j B
121 119 120 bitrdi a = i j a A × B i A j B
122 csbcom 2 nd a / j i / x j / y C = i / x 2 nd a / j j / y C
123 csbcow 2 nd a / j j / y C = 2 nd a / y C
124 123 csbeq2i i / x 2 nd a / j j / y C = i / x 2 nd a / y C
125 122 124 eqtri 2 nd a / j i / x j / y C = i / x 2 nd a / y C
126 125 csbeq2i 1 st a / i 2 nd a / j i / x j / y C = 1 st a / i i / x 2 nd a / y C
127 csbcow 1 st a / i i / x 2 nd a / y C = 1 st a / x 2 nd a / y C
128 126 127 eqtri 1 st a / i 2 nd a / j i / x j / y C = 1 st a / x 2 nd a / y C
129 csbopeq1a a = i j 1 st a / i 2 nd a / j i / x j / y C = i / x j / y C
130 128 129 eqtr3id a = i j 1 st a / x 2 nd a / y C = i / x j / y C
131 130 eqeq2d a = i j z = 1 st a / x 2 nd a / y C z = i / x j / y C
132 121 131 anbi12d a = i j a A × B z = 1 st a / x 2 nd a / y C i A j B z = i / x j / y C
133 xpss A × B V × V
134 133 sseli a A × B a V × V
135 134 adantr a A × B z = 1 st a / x 2 nd a / y C a V × V
136 132 135 cnvoprab i j z | i A j B z = i / x j / y C -1 = z a | a A × B z = 1 st a / x 2 nd a / y C
137 94 118 136 3eqtri F -1 = z a | a A × B z = 1 st a / x 2 nd a / y C
138 df-mpt z D I J = z a | z D a = I J
139 91 137 138 3eqtr4g φ F -1 = z D I J
140 139 fneq1d φ F -1 Fn D z D I J Fn D
141 13 140 mpbird φ F -1 Fn D
142 dff1o4 F : A × B 1-1 onto D F Fn A × B F -1 Fn D
143 7 141 142 sylanbrc φ F : A × B 1-1 onto D