Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1odm
Next ⟩
dff1o2
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1odm
Description:
The domain of a one-to-one onto mapping.
(Contributed by
NM
, 8-Mar-2014)
Ref
Expression
Assertion
f1odm
⊢
F
:
A
⟶
1-1 onto
B
→
dom
⁡
F
=
A
Proof
Step
Hyp
Ref
Expression
1
f1ofn
⊢
F
:
A
⟶
1-1 onto
B
→
F
Fn
A
2
fndm
⊢
F
Fn
A
→
dom
⁡
F
=
A
3
1
2
syl
⊢
F
:
A
⟶
1-1 onto
B
→
dom
⁡
F
=
A