Metamath Proof Explorer


Theorem f1oen4g

Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024)

Ref Expression
Assertion f1oen4g F V A W B X F : A 1-1 onto B A B

Proof

Step Hyp Ref Expression
1 f1oeq1 f = F f : A 1-1 onto B F : A 1-1 onto B
2 1 spcegv F V F : A 1-1 onto B f f : A 1-1 onto B
3 2 imp F V F : A 1-1 onto B f f : A 1-1 onto B
4 3 3ad2antl1 F V A W B X F : A 1-1 onto B f f : A 1-1 onto B
5 breng A W B X A B f f : A 1-1 onto B
6 5 3adant1 F V A W B X A B f f : A 1-1 onto B
7 6 adantr F V A W B X F : A 1-1 onto B A B f f : A 1-1 onto B
8 4 7 mpbird F V A W B X F : A 1-1 onto B A B