Metamath Proof Explorer


Theorem f1oen4g

Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024)

Ref Expression
Assertion f1oen4g FVAWBXF:A1-1 ontoBAB

Proof

Step Hyp Ref Expression
1 f1oeq1 f=Ff:A1-1 ontoBF:A1-1 ontoB
2 1 spcegv FVF:A1-1 ontoBff:A1-1 ontoB
3 2 imp FVF:A1-1 ontoBff:A1-1 ontoB
4 3 3ad2antl1 FVAWBXF:A1-1 ontoBff:A1-1 ontoB
5 breng AWBXABff:A1-1 ontoB
6 5 3adant1 FVAWBXABff:A1-1 ontoB
7 6 adantr FVAWBXF:A1-1 ontoBABff:A1-1 ontoB
8 4 7 mpbird FVAWBXF:A1-1 ontoBAB