Metamath Proof Explorer


Theorem f1oenfirn

Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024)

Ref Expression
Assertion f1oenfirn BFinF:A1-1 ontoBAB

Proof

Step Hyp Ref Expression
1 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
2 f1ofn F-1:B1-1 ontoAF-1FnB
3 fnfi F-1FnBBFinF-1Fin
4 2 3 sylan F-1:B1-1 ontoABFinF-1Fin
5 1 4 sylan F:A1-1 ontoBBFinF-1Fin
6 5 ancoms BFinF:A1-1 ontoBF-1Fin
7 cnvfi F-1FinF-1-1Fin
8 f1orel F:A1-1 ontoBRelF
9 dfrel2 RelFF-1-1=F
10 8 9 sylib F:A1-1 ontoBF-1-1=F
11 10 eleq1d F:A1-1 ontoBF-1-1FinFFin
12 11 biimpac F-1-1FinF:A1-1 ontoBFFin
13 7 12 sylan F-1FinF:A1-1 ontoBFFin
14 6 13 sylancom BFinF:A1-1 ontoBFFin
15 f1oen3g FFinF:A1-1 ontoBAB
16 14 15 sylancom BFinF:A1-1 ontoBAB