Metamath Proof Explorer


Theorem f1oeq1

Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1oeq1 F = G F : A 1-1 onto B G : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1eq1 F = G F : A 1-1 B G : A 1-1 B
2 foeq1 F = G F : A onto B G : A onto B
3 1 2 anbi12d F = G F : A 1-1 B F : A onto B G : A 1-1 B G : A onto B
4 df-f1o F : A 1-1 onto B F : A 1-1 B F : A onto B
5 df-f1o G : A 1-1 onto B G : A 1-1 B G : A onto B
6 3 4 5 3bitr4g F = G F : A 1-1 onto B G : A 1-1 onto B