Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1oeq1
Next ⟩
f1oeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1oeq1
Description:
Equality theorem for one-to-one onto functions.
(Contributed by
NM
, 10-Feb-1997)
Ref
Expression
Assertion
f1oeq1
⊢
F
=
G
→
F
:
A
⟶
1-1 onto
B
↔
G
:
A
⟶
1-1 onto
B
Proof
Step
Hyp
Ref
Expression
1
f1eq1
⊢
F
=
G
→
F
:
A
⟶
1-1
B
↔
G
:
A
⟶
1-1
B
2
foeq1
⊢
F
=
G
→
F
:
A
⟶
onto
B
↔
G
:
A
⟶
onto
B
3
1
2
anbi12d
⊢
F
=
G
→
F
:
A
⟶
1-1
B
∧
F
:
A
⟶
onto
B
↔
G
:
A
⟶
1-1
B
∧
G
:
A
⟶
onto
B
4
df-f1o
⊢
F
:
A
⟶
1-1 onto
B
↔
F
:
A
⟶
1-1
B
∧
F
:
A
⟶
onto
B
5
df-f1o
⊢
G
:
A
⟶
1-1 onto
B
↔
G
:
A
⟶
1-1
B
∧
G
:
A
⟶
onto
B
6
3
4
5
3bitr4g
⊢
F
=
G
→
F
:
A
⟶
1-1 onto
B
↔
G
:
A
⟶
1-1 onto
B