Metamath Proof Explorer


Theorem f1oeq123d

Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses f1eq123d.1 φ F = G
f1eq123d.2 φ A = B
f1eq123d.3 φ C = D
Assertion f1oeq123d φ F : A 1-1 onto C G : B 1-1 onto D

Proof

Step Hyp Ref Expression
1 f1eq123d.1 φ F = G
2 f1eq123d.2 φ A = B
3 f1eq123d.3 φ C = D
4 f1oeq1 F = G F : A 1-1 onto C G : A 1-1 onto C
5 1 4 syl φ F : A 1-1 onto C G : A 1-1 onto C
6 f1oeq2 A = B G : A 1-1 onto C G : B 1-1 onto C
7 2 6 syl φ G : A 1-1 onto C G : B 1-1 onto C
8 f1oeq3 C = D G : B 1-1 onto C G : B 1-1 onto D
9 3 8 syl φ G : B 1-1 onto C G : B 1-1 onto D
10 5 7 9 3bitrd φ F : A 1-1 onto C G : B 1-1 onto D