Metamath Proof Explorer


Theorem f1oeq1d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq1d.1 φ F = G
Assertion f1oeq1d φ F : A 1-1 onto B G : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1oeq1d.1 φ F = G
2 f1oeq1 F = G F : A 1-1 onto B G : A 1-1 onto B
3 1 2 syl φ F : A 1-1 onto B G : A 1-1 onto B