Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1oeq2
Next ⟩
f1oeq3
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1oeq2
Description:
Equality theorem for one-to-one onto functions.
(Contributed by
NM
, 10-Feb-1997)
Ref
Expression
Assertion
f1oeq2
⊢
A
=
B
→
F
:
A
⟶
1-1 onto
C
↔
F
:
B
⟶
1-1 onto
C
Proof
Step
Hyp
Ref
Expression
1
f1eq2
⊢
A
=
B
→
F
:
A
⟶
1-1
C
↔
F
:
B
⟶
1-1
C
2
foeq2
⊢
A
=
B
→
F
:
A
⟶
onto
C
↔
F
:
B
⟶
onto
C
3
1
2
anbi12d
⊢
A
=
B
→
F
:
A
⟶
1-1
C
∧
F
:
A
⟶
onto
C
↔
F
:
B
⟶
1-1
C
∧
F
:
B
⟶
onto
C
4
df-f1o
⊢
F
:
A
⟶
1-1 onto
C
↔
F
:
A
⟶
1-1
C
∧
F
:
A
⟶
onto
C
5
df-f1o
⊢
F
:
B
⟶
1-1 onto
C
↔
F
:
B
⟶
1-1
C
∧
F
:
B
⟶
onto
C
6
3
4
5
3bitr4g
⊢
A
=
B
→
F
:
A
⟶
1-1 onto
C
↔
F
:
B
⟶
1-1 onto
C