Metamath Proof Explorer


Theorem f1oeq2

Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1oeq2 A = B F : A 1-1 onto C F : B 1-1 onto C

Proof

Step Hyp Ref Expression
1 f1eq2 A = B F : A 1-1 C F : B 1-1 C
2 foeq2 A = B F : A onto C F : B onto C
3 1 2 anbi12d A = B F : A 1-1 C F : A onto C F : B 1-1 C F : B onto C
4 df-f1o F : A 1-1 onto C F : A 1-1 C F : A onto C
5 df-f1o F : B 1-1 onto C F : B 1-1 C F : B onto C
6 3 4 5 3bitr4g A = B F : A 1-1 onto C F : B 1-1 onto C