Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1oeq23
Next ⟩
f1eq123d
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1oeq23
Description:
Equality theorem for one-to-one onto functions.
(Contributed by
FL
, 14-Jul-2012)
Ref
Expression
Assertion
f1oeq23
⊢
A
=
B
∧
C
=
D
→
F
:
A
⟶
1-1 onto
C
↔
F
:
B
⟶
1-1 onto
D
Proof
Step
Hyp
Ref
Expression
1
f1oeq2
⊢
A
=
B
→
F
:
A
⟶
1-1 onto
C
↔
F
:
B
⟶
1-1 onto
C
2
f1oeq3
⊢
C
=
D
→
F
:
B
⟶
1-1 onto
C
↔
F
:
B
⟶
1-1 onto
D
3
1
2
sylan9bb
⊢
A
=
B
∧
C
=
D
→
F
:
A
⟶
1-1 onto
C
↔
F
:
B
⟶
1-1 onto
D