Metamath Proof Explorer


Theorem f1oeq3

Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1oeq3 A = B F : C 1-1 onto A F : C 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1eq3 A = B F : C 1-1 A F : C 1-1 B
2 foeq3 A = B F : C onto A F : C onto B
3 1 2 anbi12d A = B F : C 1-1 A F : C onto A F : C 1-1 B F : C onto B
4 df-f1o F : C 1-1 onto A F : C 1-1 A F : C onto A
5 df-f1o F : C 1-1 onto B F : C 1-1 B F : C onto B
6 3 4 5 3bitr4g A = B F : C 1-1 onto A F : C 1-1 onto B