Metamath Proof Explorer


Theorem f1oeq3d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq3d.1 φ A = B
Assertion f1oeq3d φ F : C 1-1 onto A F : C 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1oeq3d.1 φ A = B
2 f1oeq3 A = B F : C 1-1 onto A F : C 1-1 onto B
3 1 2 syl φ F : C 1-1 onto A F : C 1-1 onto B